

第二章 基本生物化學與細胞 Basic Biochemistry and Cells

課程摘要

本課程為介紹人體構造及構造與構造之間關係,作 為學習生理學及各科護理學之基礎,並提升學習基 礎醫學的興趣。

課程目標

- 1.能藉由模型瞭解人體各器官系統的組成。(對應八 大核心之基礎生物醫學科學)
- 2. 能藉由模型說出人體骨骼、肌肉及心臟的位置與 特殊構造。(對應八大核心之基礎生物醫學科學)
- 3. 能主動查閱書籍,運用組織表或繪圖法撰寫報告。(對應八大核心之終身學習)
- 4.能藉由觀察與討論,促進團隊合作精神。(對應八 大核心之溝通與合作)

新生營護管理專科學校 Hin Sang Jean College of Medical Can and Management

本章大綱

- 化學化合物與生命過程
 - (一)無機化合物
 - (二)有機化合物
- 細胞的構造
 - (一)細胞膜
 - (二)細胞質
 - (三)胞器
 - (四)細胞包涵體
 - (五)細胞外物質

- 細胞的生理
 - (一)物質通過細胞膜的方式
- (二)基因的作用
- 細胞分裂
 - -(一)體細胞分裂
 - (二)生殖細胞分裂

前言

- 物質皆是由**化學元素** (element)組成。
- 人體中約含有26種元素
- ▶氧(O)、碳(C)、氫(H)、氦(N)四種,約占體重的96%,再加上鈣(Ca)、磷(P)則約占體重的99%(表2-1)。
- 化學物質在體內不斷的進行適當的化學反應,合成<mark>化合物</mark> 後演化成生命過程中的最基本單位「細胞(cell)」。

新生營護 Han Beng Jane Calog	管理專科學校 e of Madical Care and Management	組成人體的主要元素
化學元素	體重百分比	重要性
氧(O)	65.0	各種化學物質的主要組成分子;細胞產生能量 所必須的氣體。
碳(C)	18.5	所有有機分子的主要成分。
氫(H)	9.5	體內大部分化合物的組成分子;以 離子狀態 存在時,可影響 體液的pH值 。
氦(N)	3.2	蛋白質與核酸的組成分子。
鈣(Ca)	1.5	以 鈣鹽的形式 構成 骨骼及牙齒 ;其離子與漿膜的功能、肌肉的收縮、血液的凝固、細胞的分裂、及神經衝動的傳導相關。
磷(P)	1.0	以 磷酸鈣鹽的形式 存在於 骨骼及牙齒 ;亦存在 於許多 蛋白質、核酸及腺嘌呤核苷三磷酸(ATP)

新生營援 Hin Sing Area Colog	管理專科學校 nd Medical Care and Management	組成人體的主要元素
化學元素	體重百分比	重要性
鉀(K)	0.4	為 <mark>細胞內的主要陽離子、對神經衝動的傳導及</mark> 肌肉的收縮 很重要。
硫(S)	0.3	為許多蛋白質,由其是 <mark>肌肉收縮蛋白</mark> 的成分。
鈉(Na)	0.2	為細胞外液的主要陽離子;與水分平衡、肌肉的收縮、及神經衝動的傳導相關。
氯(CI)	0.2	為 <mark>細胞外液</mark> 的 主要陰離子 ;與膜的功能及水分的吸收相關。
鎂(Mg)	0.1	為很多代謝作用中的輔因子。
碘(I)	0.1	為甲狀腺素的組成分子。
鐵(Fe)	0.1	為血紅素與呼吸酵素的必要成分。

新生營護營理專科學校 Has long Jean Cologe of Michael Con and Management

化學化合物與生命過程

- 化合物分類:
- ➤ 無機化合物(inorganic compound)
- ➤ 有機化合物(organic compound)
 - 同時含有碳及氫原子的物質
- 比較:
- ▶ 有機化合物-分子量大、共價鍵結合
- ➤ 無機化合物-分子量小、離子鍵結合

(一)無機化合物Inorganic Compound

▶ 水、鹽類、酸及鹼。

■ 水Water

- ▶ 是人體內含量最多、最重要的無機化合物,約占體重的三分之
 - 二,並廣布於**除了牙齒的琺瑯質及骨骼組織**外的各種組織。

1. 比熱高:

- --亦即**水吸熱及散熱的速度慢**,可維持體溫的恆定。
- -人體暴露於**陽光下**,或在**劇烈的肌肉運動下**,亦**能維持體溫** 的恆定。

2. 蒸發熱高:

- -水由**液體**蒸發成氣體時,需要大量的熱能
- -排汗時可提供人體很好的冷卻機轉。

新生營護管理專科學校 Han Sang Janus College of Medical Care and Management

化學化合物與生命過程

3. 極性:

- 水具有**極性**,是體內的**主要運輸介質**。
- **營養物質、呼吸氣體及代謝廢物**等可因<mark>溶於血漿</mark>中,而被送 到體內各處。
- 體內許多大型的**有機分子**可懸浮於細胞內液中,而能和其他 的化學物質接觸,進行各種必要的化學反應。

4.反應性:

- 水能<mark>參與各種化學反應</mark>,例如在消化作用中,水能滲入大的 食物分子內,而將其水解成較小的分子。

5.潤滑及保護墊:

- 水是**體內黏液及潤滑液**的主要成分,可使器官運動時,減少 與相鄰器官的摩擦。
- **腦脊髓液**圍繞**腦與脊髓**而形成**保護墊**。

新生營護管理專科學校 Han Tany Janu Chings of Madical Care and Management

化學化合物與生命過程

- 酸、鹼與鹽類Acids, Bases, and Salts
 - ➤ 體內的無機酸、無機鹼或鹽類分子溶於水中時會分解成離子,這種溶液可導電,所以其粒子稱為電解質(electrolyte)。
 - ▶酸:能解離成一個或多個**氫離子(H**+)
 - ▶ 鹼:能解離成一個或多個**經離子(OH**-)
 - ▶ 鹽類溶於水,能解離成既不是H+也不是OH- 的陽離子與陰 離子。
 - > 酸與鹼作用會形成鹽類,例如

HCl + NaOH → NaCl + H₂O (酸) (鹼) (鹽類) (水)

11

新生營護管理專科學校 His Bong Javie Cology of Nation Con and Management

化學化合物與生命過程

■ 鹽類的離子是許多必須化學元素的來源,表**2-2**顯示一些 鹽類解離成離子的情形。

表 2-2 供應人體之間重要化學元素之代表性鹽類解離成離子的情形

鹽類 (Salt)		陽離子 (Cation)		陰離子 (Anion)
氯化鈉 (NaCl)		鈉離子 (Na ⁺)	+	氯離子 (CI ⁻)
氯化鉀 (KCI)	 →	鉀離子 (K+)	+	氯離子 (CI-)
氯化鈣 (CaCl2)		鈣離子 (Ca ²⁺)	+	氯離子 (2CIT)
氯化鎂 (MgCl2)	\longrightarrow	鎂離子 (Mg ²⁺)	+	氯離子 (2CI-)
碳酸鈣 (CaCO3)		鈣離子 (Ca ²⁺)	+	碳酸根離子(CO3 ²⁻)
磷酸鈣 (Ca3(PO4)2)	\longrightarrow	鈣離子 (3Ca ²⁺)	+	磷酸根離子 (2PO43-)
硫酸鈉 (Na ₂ SO ₄)		鈉離子 (2Na+)	+	硫酸根離子 (SO42-)

- 酸鹼平衡與酸鹼值Acid-Base Balance and pH
 - ➤ 氫離子 (H+) 愈多則愈酸。
 - ▶ 經離子(OH·)愈多則愈鹼。
 - ▶ 水溶液中H⁺與OH⁻濃度的乘積必為10⁻¹⁴,即[H⁺][OH⁻] =10-14, 見表2-3。
 - ▶ pH=7,中性,溶液中H⁺與OH⁻濃度相等
 - ▶ pH<7,為酸性</p>
 - ▶ pH>7,為檢性。

表 2-3 pH 值與 H ⁺ 濃度				
H ⁺ 濃度(莫耳 / 公升)	pH	酸鹼性	рОН	OH 濃度 (莫耳/公升)
(10 ⁰) 1.0	0		14	(10 ⁻¹⁴) 0.00000000000001
(10 ⁻¹) 0.1	1		13	(10 ⁻¹³) 0.0000000000001
(10 ⁻²) 0.01	2		12	(10 ⁻¹²) 0.000000000001
(10 ⁻³) 0.001	3	酸性	11	(10 ⁻¹¹) 0.00000000001
(10 ⁻⁴) 0.0001	4		10	(10 ⁻¹⁰) 0.0000000001
(10 ⁻⁵) 0.00001	5		9	(10 ⁻⁹) 0.000000001
(10 ⁻⁶) 0.000001	6		8	(10 ⁻⁸) 0.00000001
(10 ⁻⁷) 0.0000001	7	中性	7	(10 ⁻⁷) 0.0000001
(10 ⁻⁸) 0.0000001	8		6	(10 ⁻⁶) 0.000001
(10 ⁻⁹) 0.000000001	9		5	(10 ⁻⁵) 0,00001
10000000000 (01-01)	10		4	(10-4) 0.0001
(10 ⁻¹¹) 0.0000000001	11	鹼性	3	(10 ⁻³) 0.001
(10 ⁻¹²) 0.000000000001	12		2	(10-2) 0.01
(10 ⁻¹³) 0.0000000000001	13		1	(10-1) 0.1
(10 ⁻¹⁴) 0.000000000000001	14		0	(10°) 1.0

新生營護管理專科學校 Han lang Jarre Cologs of Medical Con and Management

化學化合物與生命過程

反應的必備條件, 若pH發

生顯著變化,會導致**化合** 物分子形態的改變或化學

鍵的破壞,而影響細胞的 生理活動,進而傷害生命

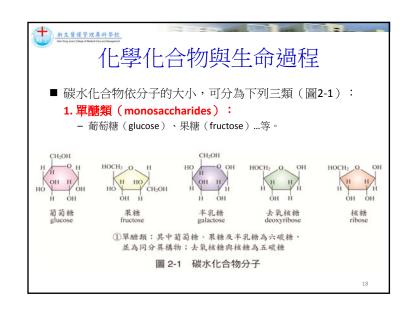
系統(表2-4)。

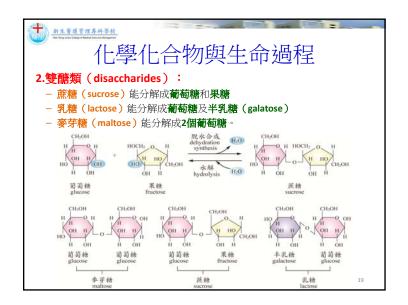
■ 體液中<mark>適當的pH值是生化</mark> ■ 健康人的血液pH值需維持於

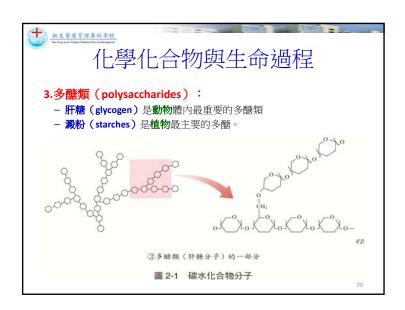
7.35~7.45。

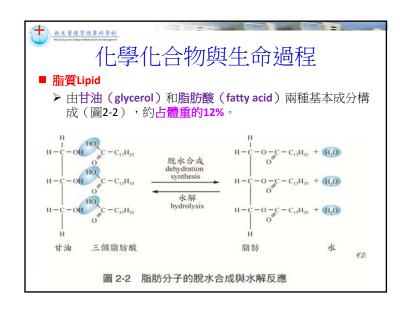
表 2-4 正常體液的	りpH 值
體液	pH值
胃液	1.2 ~ 3.0
尿液	4.6 ~ 8.0
	6.35 ~ 6.85
血液	7.35 ~ 7.45
精液(含精蟲)	7.20 ~ 7.60
腦脊髓液	7.4
胰液	7.1 ~ 8.2
膽汁	$7.6 \sim 8.6$

新生營護管理專科學校


化學化合物與生命過程


(二)有機化合物Organic Compound

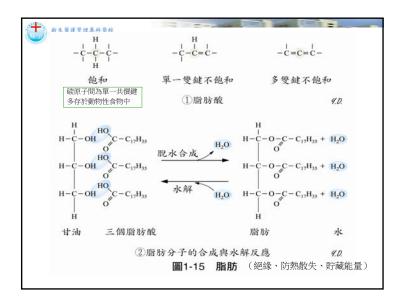

- ■生物體內有機化合物的**組成元素間是以共價鍵相結合**,當共 **價鍵**被破壞時,會釋出**大量能量**,是**人類能量的主要來源**。
- ■人體內的有機化合物
- 碳水化合物(carbohydrate)
- 脂質 (lipid)
- 蛋白質 (protein)
- 核酸 (nucleic acid)
- 三磷酸腺苷 (adenosine triphosphate; ATP)



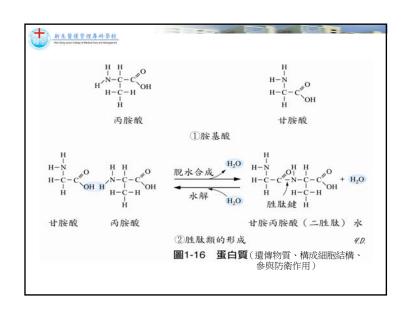
- 碳水化合物Carbohydrate
 - ▶ 占體內有機化合物的大部分。
 - ➤ 就是**醣類**(saccharide),是人類攝食的基本食物,經消化、吸收後可成為能量來源。
 - ➤ 經消化吸收後,大部分先變成<mark>肝糖</mark>儲存於**肝臟與骨骼肌** 內,在身體需要能量時,**肝糖**會分解成葡萄糖,經血液送 至組織細胞中繼續分解,經**糖解作用(glycolysis)、克氏** 循環(Krebs' cycle)、電子傳遞鏈(electric transfer system; ETS)作用,一分子葡萄糖可分解產生38個ATP來供 應能量,但過程中消耗2個ATP,因此淨所得為36個ATP。

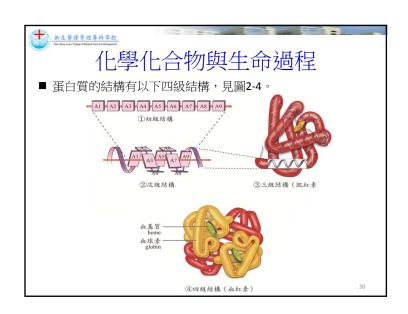
- 大多數的**脂質不具極性,不溶於水**,但可**溶於酒精、氯仿** 及乙醚等有機溶劑。
- 人體中,除了少數脂肪參與細胞的化學反應或執行特殊的 生理功能外,大部分是**儲存於全身的組織器官(表2-5)**, 可絕緣、隔熱、減少體內熱量的散失,又是組織器官的良 好保護墊,且能在需要時燃燒產生能量。

22


新生營護管理專科學校 表 2-5 人體內具代表性的脂質 存在位置與功能 中性脂肪 存在於皮下組織及器官周圍; 具有保護、絕緣、作為能量來源的 磷卵磷脂 細胞膜的主要成分。 腦磷脂 在神經組織中含量高。 膽固醇 存在於細胞、血液、神經組織中; 為膽鹽、維生素 D、及類固醇 激素的先質。 由肝臟釋放到消化道,可幫助脂肪的消化和吸收;為吸收脂溶性 類 維生素(A、D、E、K)所必需。 由皮膚受紫外線照射所產生; 為骨骼的生長與修復所必需。 維生素D 性激素 由性腺分泌,為正常生殖功能所必需。 腎上腺皮質素 為維持正常血糖、調節鹽類及水分的平衡所必需。

+	新生營護營理專科 Hain Song Javier Callege of Medical Care and Ma	B校 report
表	2-5 人體內	具代表性的脂質
	脂質類型	存在位置與功能
	胡蘿蔔素	存在於蛋黃、胡蘿蔔、蕃茄中的色素;為維生素 A 的先質;在視網膜中,維生素 A 可轉變成網膜素,而與視覺相關。
其他	維生素 E	存在於麥芽及綠色的葉菜中;具有抗氧化的功能,以防止細胞結構與功能的異常;能促進傷口的癒合。
類脂質	維生素 K	存在於很多食物中,可由腸內細菌的作用而供人體利用;可促進 血液凝固,以免失血過多。
物質	前列腺素	存在於細胞膜;能刺激子宮收縮;調節血壓、新陳代謝、胃液分 泌及消化道肌肉的收縮;及抑制脂肪分解等。
	脂蛋白	主要有高密度脂蛋白(HDL)及低密度脂蛋白(LDL);能在血液中運輸脂肪酸和膽固醇。
		24





- 必需脂肪酸(essential fatty acids)是身體不能製造,必須由食物攝取的脂肪酸,如
 - ▶亞麻油酸(linoleic acid)
 - 由玉米油上發現,有18個碳及2個雙鍵,第一個雙鍵 由甲基(CH_3)起算第6個碳上,故又稱為ω-6(omega-6) 脂肪酸
 - ▶次亞麻油酸 (linolenic acid)
 - 由菜籽油上發現,有18個碳及3個雙鍵,第一個雙鍵 位於甲基起算第3個碳上,故又稱為 ω -3(omega-3) 脂肪酸。

新生營護管理專科學校 Han Sing Anni Ching of Madrat Corn and Management

化學化合物與生命過程

1.初級結構 (primary structure):

- 組成蛋白質的氨基酸,按照特定的順序成**線狀排列**。
- 結構改變時會造成嚴重後果,例如**將血紅蛋白中的一個 氨基酸替換掉**,即會導致血紅素(hemoglobin)變形, 造成**鐮狀貧**血(sickle cell anemia)。(圖2-4①))

2.次級結構 (secondary structure) :

- 是指線狀之多胜分子沿二度空間纏繞或並排且打摺,而 形成順時針方向螺旋(α-helix)或摺片(pleated sheet)。 (圖2-4②)

31

新生營護管理專科學校 Han Tang Janus Chings of Madical Con and Management

化學化合物與生命過程

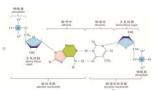
3.三級結構(tertiary structure):

- 螺旋蛋白質分子纏繞打摺成<mark>三度空間</mark>之形狀,例如肌紅素 (myoglobin)。(圖2-4③)

4.四級結構 (quaternary structure):

- 由兩個或兩個以上的三級結構蛋白質分子結合而成的蛋白質分子,例如血紅素(圖2-4④)。

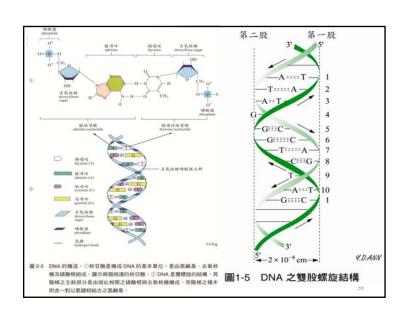
新生營獲管理專科學校


化學化合物與生命過程

- 核酸Nucleic Acid
 - ▶最初在**細胞核**內發現
 - ▶含有碳、氫、氧、氦及磷的大分子有機化合物。
 - ▶與合成細胞所需蛋白質有關。
 - ▶數千個核苷酸所形成的單股聚合物。
 - ▶基本單位是核苷酸(nucleotide)。
 - ▶核苷酸-磷酸根、五碳糖及含氮鹼基所組成,依化學 結構可分為去氧核糖核酸(DNA)與核糖核酸(RNA)

新生營護管理專科學校

化學化合物與生命過程


- 去氧核糖核酸 Deoxyribonucleic Acid; DNA
- ▶ DNA的核苷酸含有下列三個基本部分:
 - 1.有四種可能之氣鹼基(nitrogen base)中之一種:
 - » 氢鹼基為含有碳、氫、氧及氦原子的環狀構造。有: 腺嘌呤 (adenine)、胸嘧啶(thymine)、胞嘧啶(cytosine)、與鳥嘌呤 (guanine) •
 - » 腺嘌呤與鳥嘌呤為雙環構造; 胸嘧啶與胞嘧啶的分子較小,為單環 構造。
 - » 腺嘌呤(A) 與胸嘧啶(T) 配對
 - » 胞嘧啶(C) 與鳥嘌呤(G) 配對。
 - 2.含有去氧核糖(deoxyribose)。 3.含有磷酸根。
- ▶ 形成雙股的螺旋結構。
- ▶ DNA 係以半保留的方式, 進行複製。
- ▶ DNA 是貯存遺傳信息的分子。

新生營運管理專科學校

化學化合物與生命過程

- DNA的構造特徵:
 - 1. 由雙股構造組成,中間有橫棒相連,這兩股構造**互相扭曲**, 像是扭曲的繩梯,而形成**雙螺旋(double helix)。**
 - 2.DNA階梯的垂直部分含有彼此相間之磷酸根與核苷酸之去 **氧核糖**部分。
 - 3. 階梯的橫木含有一對氦鹼基。
- 細胞所含的遺傳物質稱為基因(gene),每個基因都是DNA 分子的某一節段(segment)。

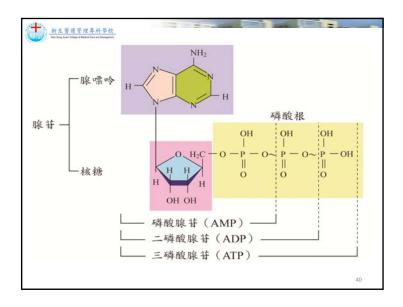
■ 核糖核酸 Ribonucleic Acid; RNA

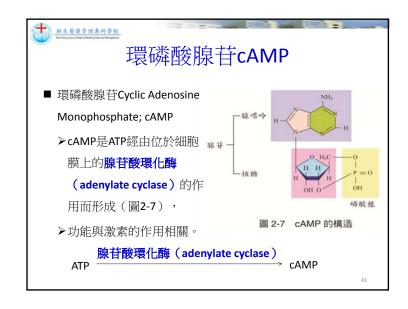
- 1. RNA為單股**核苷酸長鏈**,DNA是雙股;RNA核苷酸所含的**糖**是核糖,且RNA 不含有胸嘧啶,而以尿嘧啶(uracil)代替之。
- 2. 同一個細胞中至少有三種不同的RNA,每一種RNA都在蛋白質合成時,與 DNA扮演特定的角色。RNA 的種類有三:
 - →核糖體 RNA(ribosomal RNA; rRNA):與核醣蛋白構成核醣體。
 - →傳訊 RNA(messenger RNA; mRNA):攜帶DNA的遺傳密碼,作為蛋白質合成的模板,以決定胺基酸排列的順序。
 - →<mark>運送 RNA(transfer RNA;tRNA)</mark>:攜帶特定的胺基酸到核醣體去**合成蛋白** 質。
- 3. RNA 是表現遺傳信息的分子。

新生營護管理專科學校 Hin: Tang Javar Chings of Medical Can and Management

DNA與RNA的比較

		DNA		RNA	
		DNA	mRNA	tRNA	rRNA
Ā	基本結構	雙股螺旋	單股	部分雙股	單股
	存在處	染色體、葉綠體、 粒線體	核內	細胞質	核仁、核糖體
核	含氮鹽基	A · T · G · C		A · U · G ·	С
苷	五碳糖	去氧核糖		核糖	
酸	磷酸	H_3PO_4		H_3PO_4	
	製造	自我複製(半保留)	J	以DNA的鑄模	製造
		1. 貯存遺傳信息 的分子		現遺傳信息的 控制蛋白質合	
	功能	 遺傳物質 控制RNA合成 控制生理活動 	帶有合成特 殊蛋白質的 密碼	可解讀在 mRNA分子 上的密碼	構成核糖體的 成分


新生營護管理專科學校 His Bong Javier Chings of Medical Con and Management

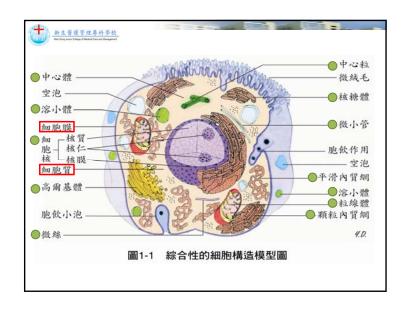

化學化合物與生命過程

- 三磷酸腺苷Adenosine Triphosphate; ATP
 - ▶ 是細胞維持生命不可或缺的分子,且對於各種細胞活動負 有儲存能量的功能。
 - ▶ 含有三個磷酸根 (PO₄³-) 及一個由腺嘌呤與五碳糖組成的 腺苷 (adenosine) 單位 (圖2-6)。
 - ▶ 可釋出大量能量供細胞進行基本活動。
 - ➤ 去掉末端磷酸根後的分子稱為二磷酸腺苷(adenosine diphosphate; ADP),ADP可再合成ATP。

ATP

→ ADP + 磷酸根 + 能量

美田泊竹構造
英國羅勃虎克(1635~1703)在1665著有顯微圖說,收集在顯微鏡下觀察到的<u>動物、植物、礦物</u>等圖版,其中有軟木塞的構造圖,軟木塞是由非常多小區格部分構成,因此命名為cell。
英國古魯(1641~1712)發現bladder(氣泡)。
意大利馬爾比基(1682~1694)發現ultriculi(小囊)等。
1838年德國施萊登發現植物體是由細胞構成。
1839年德國許旺發現動物體是由細胞構成。


-「Cell」在幕府末年由學者宇田川蓉菴翻譯成細胞。

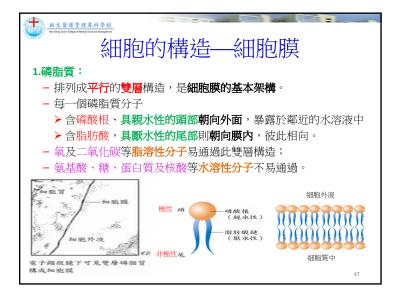
新生營護管理專科學校

新生營護管理專科學校 Hin Sing Antir Citiga of Medial Con and Varagement

細胞的構造

- ■細胞(cell)為組成生物體構造上和功能上的基本單位。
- 每一**組織**及器官均由不同**種類的細胞**構成。
- 為了**適應與執行不同的功能**,各細胞間雖有些為差 異,但都有一些相同的基本架構。
- 細胞的架構包括細胞膜 (cell membrane) 、細胞質 (cyto-plasm)及胞器 (organelle)三個部分(圖1-1)。

細胞的構造—細胞膜

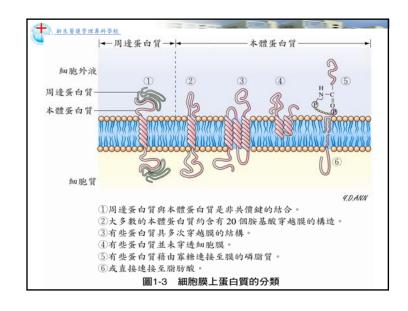

(一)細胞膜Cell Membrane

● 又稱為**胞漿膜**,極薄且脆弱,厚度約6~10 nm(奈米,10°公 尺),可將細胞與細胞或細胞與外在環境分開。

■細胞膜的構造

- ▶主要是由磷脂質(phospholipid, 25%)與蛋白質(55%)組成,其他有膽固醇、醣脂質、碳水化合物、水及離子等組成分子。
- 由雙層磷脂質分子與鑲嵌在其間之蛋白質分子所組成。
- 每一磷脂質分子由**具極性的磷酸鹽頭部**,與**含脂肪酸的非極性尾部**所組成。
- ➤ 磷脂質及蛋白質在細胞膜上可以自由在細胞膜上横向移動, 並非均匀分布,這種細胞膜的構造理論稱為流體鑲嵌模型 (fluid mosaic model)。

新生養選挙収率科学校
We have the first of the part of the first of the part of the first of



新生營護管理專科學校 His Bong Javia Cology of Nation Can and Management

細胞的構造—細胞膜

2.蛋白質:

- **■構成細胞膜的蛋白質**可分成兩類
- 1.整(本)體蛋白質 (integral protein)
 - →位於或靠近<mark>內外膜表面</mark>,或整個以**球形或不規則**形實 穿整個細胞膜。
 - →功能,如:作為**外來化學物質**或**荷爾蒙**的接受體、形成離子通道。
- 2.周邊蛋白質 (peripheral protein)
 - →可藉由許多方式**附著於膜的表面**。
 - →功能,如:**催化細胞化學反應的酶**。
- ■鑲嵌在細胞膜上的蛋白質,形成動態平衡的細胞膜結構, 此為<mark>流體鑲嵌模型</mark>(fluid mosaic model)結構。

細胞的構造—細胞膜

- ■綜合膜蛋白的功能:
- (1)為結構蛋白 (structural protein)。
- (2)離子通過膜的主動運輸時,作為幫浦(pump)。
- (3)作為**載體**(carrier),將物質沿著電化學梯度而運輸。
- (4)作為離子通道(ion channel),使水溶性的分子或離子通過
- (5)作為接受器(receptor),可與神經傳遞物質或荷爾蒙結合 而引發細胞內的生理變化
- (6)作為酶(enzyme),催化一些發生於膜表面的反應。
- (7)碳水化合物與蛋白質結合的醣蛋白組成的功能群(functional group),可作用於抗原的呈現及區分自體性和非自體性的 能力。

新生營護管理專科學校

細胞的構造—細胞膜

- 細胞膜的功能
 - 1. 細胞與細胞間的物理上的障壁。
 - 2. 作為化學物質的接受器,使細胞能識別並接觸外 來的化學物質。
 - 3. 具有選擇性通透性 (selecting permeability) 的半 透膜,可調節物質的進出,作為代謝上的障壁。
 - 4. 是細胞構造上的支持者。

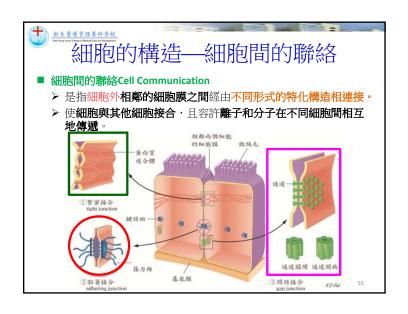
新生營護管理專科學校

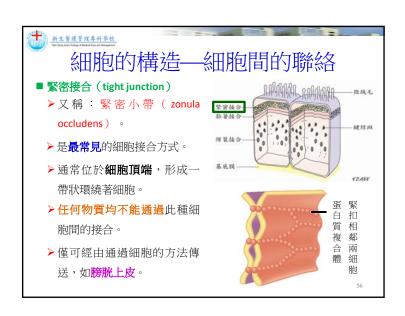
細胞的構造—細胞膜

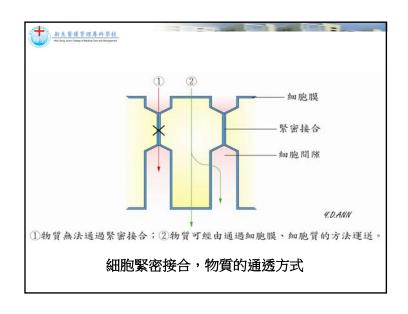
- 生理功能(Physiological Functions)
- 1. 作為屏障:包圍細胞的內容物,並與外界環境分隔而不混合。
- 2. 作為訊息接受體:本體蛋白質有攜帶碳水化合物的醣蛋白 (glycoprotein),可作為荷爾蒙、酶及抗體等物質的接受體。
- 3. 控制物質進出:對進出細胞的物質具有選擇能力,允許較小 的分子結構或易溶解於**脂質**的物質進出細胞膜,而限制其他 物質的通透。
- 4. 作為組織結構的支持者:經由細胞膜的特化作用,使相鄰的 細胞間產生接合(cell junction),而形成安定的三度空間, 如上皮組織。

細胞的構造—細胞膜

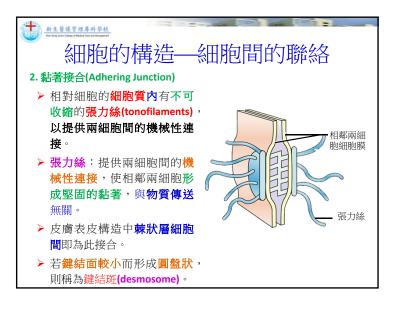
■ 特化(Modification)

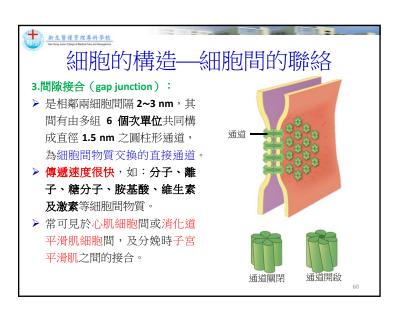

體內不同種類的細胞,其細胞膜常因生理的需要而有特化的改變。 ※微絨毛(Microvilli)


- 一體內多處中空管腔,管腔表面細胞膜處常有許多圓柱狀突起,稱 為微絨毛。
- -可以增加細胞的表面積。
- 一如腎臟近曲小管細胞膜上的刷狀緣、小腸腔絨毛的紋狀緣及鼻腔 嗅覺上皮支持細胞表面的紋狀緣。


※摺皺(Basal Infolding)

- -具吸收作用或分泌作用較旺盛的細胞底面,在接近結締組織或微血管面的細胞膜上會凹陷行程許多摺皺。
- 增加接觸的表面積。

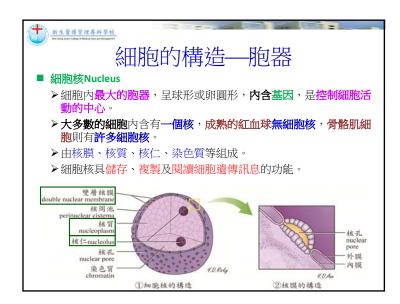




細胞的構造—細胞質

(二)細胞質Cytoplasm

- >=**胞漿質**,是指**位於**細胞<u>膜</u>與細胞<u>核</u>之間的黏稠半透明液體。
- ➤ 是細胞進行生化反應的場所,可合成新物質供細胞使用, 也可促進廢物的排除。
- ➤ 細胞質中散佈有**胞器**及大型顆粒。
- ▶ 組成
 - 水分(75%)及蛋白質(20%)、脂質(3%)、碳水 化合物、無機鹽類(礦物質)(1%)。
 - 主要**陽**離子為**鉀離子**(**K**⁺)。
 - 主要陰離子為磷酸氫根離子(HPO₄2-)。


63

新生營護營理專科學校 Min Dany Actor College of Machine Con and Managament

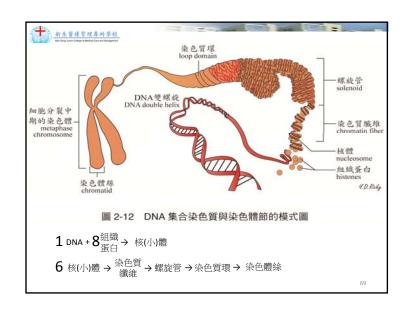
細胞的構造—-胞器

(三)胞器Organelle

- ▶是細胞的特化構造,形態及特徵各異,並且在生長、 維持、修補與控制等方面分別扮演特定的角色。
- ➤細胞內有多種化學反應同時在進行,但彼此間並不相 互干擾。
- ▶各種細胞隨著其功能的不同,所含的**胞器種類及數目**亦各有差異。

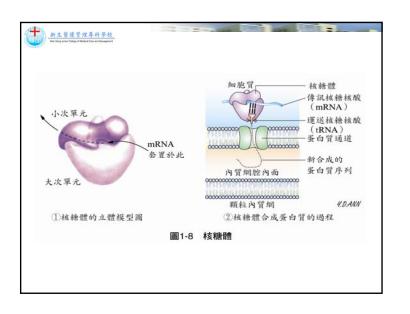
- 核膜(Nuclear Membrane)
 - ➤細胞核藉著核膜與細胞質隔開。
 - ▶構造與細胞膜類似,是由雙層的磷脂質分子排列而成(雙層) 膜),以區隔核質與細胞質。
 - ▶雙層膜**多處相癒合**形成核膜孔(nuclear pore) ,與細胞質中 內質網相交通,為物質進出細胞核的門戶。
- 核質 (nucleoplasm)
 - ▶充滿核內的膠狀液,核仁及染色質即懸浮於其中。

新生營護管理專科學校

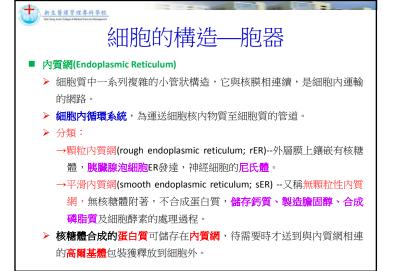

細胞的構造——胞器

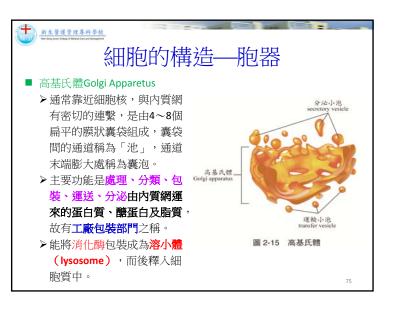
- 核仁(Nucleslus)
 - ▶ 每一細胞常含有一或二個圓球體核仁。
 - ▶ 由蛋白質、DNA、RNA組成的圓球狀構造,其外無膜包圍。
 - ▶ 是合成、儲存核糖體RNA (ribosomal ribonucleic acid; rRNA) 的場所。
 - ▶ 細胞分裂時會消失,新細胞形成時再出現。
 - ▶ 核酸:
 - ※與合成細胞所需蛋白質有關。
 - ※數千個核苷酸所形成的單股聚合物。
 - ※核苷酸-磷酸根、五碳糖及含氮鹽基所組成,依化學結 構可分為去氧核糖核酸(DNA)與核糖核酸(RNA)。

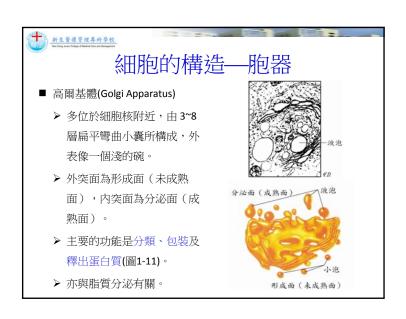
新生營護管理專科學校

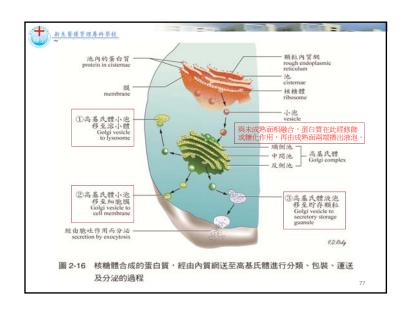

細胞的構造—-胞器

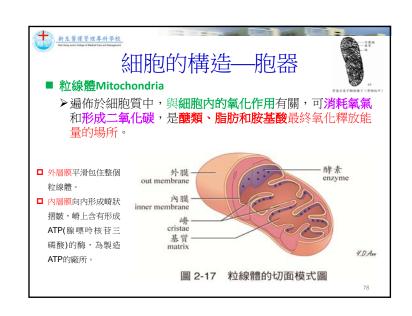
- 染色質 (chromatin):
- ▶ 散佈於核質中的顆粒性物質,由DNA(遺傳物質)及組織蛋 白組成,並呈線狀排列。
- ▶ 在細胞分裂前會變短,並捲曲成桿狀體,此時稱為染色體 (chromosome) •
- ➤ 染色質或染色體的構造單位為核小體 (nucleosome),是 由一段DNA雙螺旋纏繞八個組織蛋白而成。











- 粒線體為小的球狀、桿狀或絲狀構造,含有兩層膜,外膜光滑,內膜有許多稱為嵴(cristae)的皺摺,嵴上含大量可催化ATP生成的酵素(氧化磷酸化酶),內膜以內則充滿基質(matrix),基質內含有粒線體DNA、RNA和核糖體,以及參與克氏循環(Krebs' cycle)的酵素。
- 嵴可增大與基質接觸的大面積,有利於進行化學反應。
- 細胞需ATP的量增加時,粒線體可在粒線體DNA控制下自行複製。
- ▶ 粒線體由兩層膜組成,磷脂雙層。
- ▶ 製造 ATP 的場所,也稱為細胞的發電廠。
- ▶ 可自我複製、分裂以形成新的粒線體。
- ▶ 是對缺氧最敏感的胞器。

79

新生營護管理專科學校 Han Sang Arear Categor of Medical Care and Management

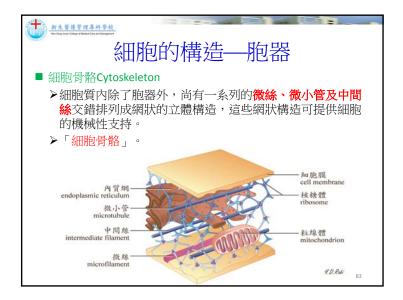
細胞的構造—-胞器

- ATP是生物的能量來源
- ▶ 1分子的葡萄糖經粒線體分解後可產生38個ATP,所以粒線體 又被稱為是「細胞的發電廠」。
- **活動較大、耗能大的細胞含有大量的粒線體**,如肌肉細胞、 肝細胞、腎小管細胞。
- 粒線體可以儲存鈣離子,可以和內質網、細胞外基質等結構 協同作用,從而控制細胞中的鈣離子濃度的動態平衡。

■ 溶小體Lysosome

- ➤ 由高基氏體包裝而成,內含有許多強力的分解酶,能分解許多種分子,例如吞噬細菌的白血球內即含有大量的溶小體,可將吞噬的細菌、異物分解。
- ▶ 消除外來廢物的主要方式,稱為細胞內消化系統、細胞的清道 夫或消化工廠。
- ➤細胞受傷或死亡時溶小體會釋出酶,促使細胞自體分解 (autolysis),故有人稱溶小體為自殺小泡。
- ➤溶小體與細胞凋亡(apoptosis)的過程,即有計畫的細胞死亡 (programmed cell death)有關。
- ▶ 特殊生理情況下,也會分解正常細胞物質,使其重新再利用或 排出,如自體分解。

81


新生營獲管理專科學校 Him long Arest College of Medical Cons and Management

細胞的構造—-胞器

■ 過氧化氯酶體Peroxisome

- ▶ 比溶小體體積小
- ▶ 又稱微小體
- ▶ 含有許多與過氧化氫代謝有關的催化酶,可將對身體細胞有盡的過氧化氫催化成水與氧,以減少對身體的傷害。
- ▶ 過氧化氫酶體在肝、腎細胞中很多。

82

細胞的構造—-胞器

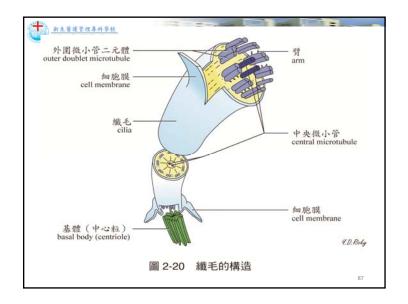
1.微絲(microfilament):

- 首徑3~12 nm的桿狀構造。
- 在**肌肉細胞**內,與肌肉收縮有關;
- 在非肌肉細胞,可提供支持與保持細胞形狀,幫助細胞運動(分泌、吞噬、胞飲),為動力構造。

2.微小管 (microtubule):

- 直徑18~30 nm的細直管狀構造,含有微管蛋白(tubulin)。
- 可形成鞭毛、纖毛、中心粒、紡錘體。

3.中間絲(intermediate filament):


- 直徑約7~11 nm,所含蛋白質因細胞而異,例如,在上皮細胞是**角蛋白(keratin)**。
- 通常散布在整個細胞質中。

新生營護管理專科學校 Han long Javar College of Medical Care and Management

細胞的構造—-胞器

- 鞭毛Flagella與纖毛Cilia
 - ▶ 構造與中心粒相似,均含有9組排成環狀的微小管,但前 者管壁中央多了兩條單獨的微小管,而且9組周圍構造的 每一東中,只含有2個(二元體,即二個一組)微小管 (圖2-20)。
 - ➤ 細胞突起數目少且長的是鞭毛,人體內唯一具鞭毛的是精 細胞,可運動
 - ➤ 突起數目多且短的是纖毛,如呼吸道內的纖毛細胞可撥動 黏在組織表面的異物顆粒。

新生營護管理專科學校 Hain-Borg Jarder College of Medical Care and Management

細胞的構造—-胞器

(四)細胞包涵體Cell Inclusion

- ▶ 主要是有機物,在細胞生命的不同時期可能出現或消失, 例如黑色素、肝糖、脂質、黏液等。
- ▶ 包涵體是指細胞內所貯存的養分、色素及結晶物質等結構。
 - 貯存的養分-如脂肪、醣類等。
 - 色素-内生或外生。
 - 結晶物質-少數細胞才有。

(五)細胞外物質

- ▶體液、分泌出來的包涵體(例如黏液)、及形成基質的特別物質。
- ➤ 體液包括間質液(interstitial fluid)及血漿(plasma), 可作為溶解、混合、運送物質與執行化學反應的介質。
- ➤基質 (matrix)由某些細胞製造後儲存在細胞外,可支持細胞、將細胞連在一起及賦予組織彈性與強度。

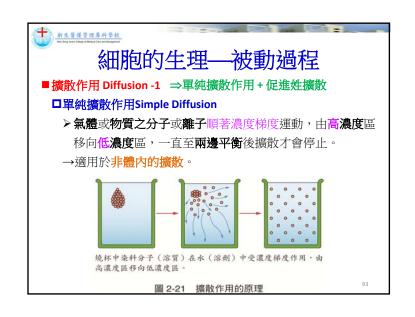
89

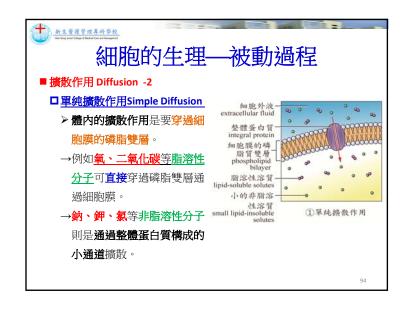
細胞的構造—-胞器

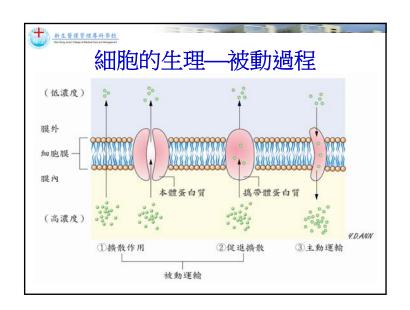
- > 其他基質為纖維狀或線狀。
 - →纖維狀基質對組織提供支持與強度,其中由膠原蛋白 (collagen)組成的膠原纖維(collagenous fiber)存在於所 有結締組織中,特別是硬骨、軟骨、肌腱與韌帶。
 - →由膠原蛋白外包著醣蛋白組成的網狀纖維(reticular fiber) 會形成網質,而包住脂肪細胞、神經纖維、骨骼肌與平滑 肌細胞,以及存在於血管壁中,也會在許多身體的柔軟器 官(如脾臟)形成網架或基質。
 - →彈性纖維(elastic fiber)由彈性蛋白(elastin)組成,可使皮膚及血管具有彈性。

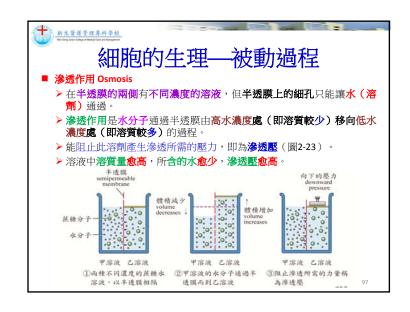
細胞的牛理—物質通過細胞膜的方式

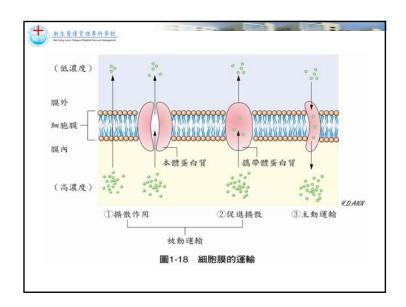
(一)物質通過細胞膜的方式


- ■細胞膜具有**選擇性通透性**(selective permeability),能讓**某些物質通** 過,亦能**限制其他物質的進**出。
- 細胞膜的通透性與下列因素相關:
- 1. 分子的大小:
 - 大的分子(例如**蛋白質**)一般不能通過細胞膜。
- 2. 在脂質中的溶解度:
 - -細胞膜主要是由**脂質**構成,**脂溶性分子**,例如氧、二氧化碳及類固醇激 **套**等,容易通過細胞膜。
- 3.離子所負的電荷:
- -細胞膜的**蛋白質**部分能夠**離子化**,離子電荷與膜相反者會<mark>被吸引</mark>,易於 通過細胞膜,反之則會被排斥,而不易通過細胞膜。
- 4.載體 (carrier) 分子的存在:
 - 有些細胞膜的整體蛋白質作為<mark>載體</mark>,可攜帶特定的物質通過細胞膜
- ■依物質進出細胞膜是否必須消耗能量,可區分為被動運輸與主動運輸。


91


細胞的生理—被動過程


- 被動過程Passive Process
 - 高濃度與低濃度間的差異為濃度梯度(concentration gradient)。
 - 被動運輸 (passive transport)
 - -物質由高濃度區移向低濃度區。
 - 移動時是<mark>順著濃度梯度</mark>。
 - 不需耗費生物體內的ATP。
 - 包括**擴散(簡單+便利)、滲透、過濾、透析**等四種型式。



物質經由細胞膜上的蛋白質進出 有以下幾種的運送方式: 1.單一運送(uniport):每一個攜帶體蛋白質或通道每次僅容一個物質進出。 2.同向運送(symport):每次有兩種物質同時且同方向的進出。 3.異向運送(antiport):每次至少有兩種物質同時進出細胞膜,但不同物質運送方向相異,如鈉鉀幫浦。

新生營護管理專科學校 His Dany Javier College of Bedied Can and Management

細胞的生理—被動過程

■ 滲透作用 Osmosis

- ▶ 等滲 (isosmotic)溶液: 生理食鹽水 (0.9% NaCl) 的滲透莫耳濃度為300 mOsm,與血漿的滲透莫耳濃度相等。
- ▶ 高滲 (hyperosmotic)溶液: 高於血漿滲透莫耳濃度。
- ▶低滲 (hyposmotic)溶液:低於血漿滲透莫耳濃度。
- ▶ 血漿的等張(isotonic)溶液:若膜兩側的溶液渗透壓相同,滲透作用不會發生,如0.9%的NaCl。
 - ●細胞置於正常的體液(等張溶液)→細胞可保持正常形狀
- 細胞置於低張 (hypotonic) 溶液 →水會滲入細胞而脹破 →如:對紅血球在此環境脹破,即是溶血 (hemolysis) 現象
- 若細胞處於**高張 (hypertonic) 溶液** →水由細胞滲出而**皺縮**
- 5% glucose溶液是何種溶液? ⇒等渗低張溶液

溶液等張性比較

■ 溶液等張性比較:

	等張	低張	高張
渗透壓	和血漿相等	比血漿低	比血漿高
溶液	0.9% NaCl 、 5%葡萄糖	0.3% NaCl、純水、 0.3M尿素溶液(等滲	
置人RBC	RBC體積不變	RBC體積漲破(溶血)	RBC皺縮,變 小
渗透性	等滲溶液	低滲溶液	高滲溶液

影響擴散速率的因素

 $\Delta P\!\times\! A\!\times\! T$

■ 擴散速率: d×√MW

▶正比:與壓力差、濃度差;擴散面積;溶液溫度。

▶反比:擴散距離;分子量(MW)開平方。

>分子量愈大,速率愈慢。

▶主要影響因素:濃度差決定運輸方向。

▶肺炎、肺塌陷、支氣管阻塞性肺疾:減少擴散面積,速率降低。

▶肺水腫、組織水腫:增加擴散距離,速率降低。

新生營護管理專科學校 His Bong Javie Cology of Nation Can and Management

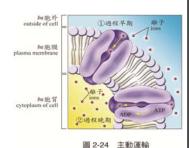
細胞的生理—被動過程

■ 過濾作用 Filtration

- ▶ 半透膜的兩側具有壓力差,而導致液體或溶質由高濃度區移向低 濃度區的過程稱為過濾作用。
- ▶ 例如腎臟<mark>鮑氏囊</mark>的**有效過濾壓**,即是**血液與鮑氏囊間的靜水壓與**滲透壓共同作用產生壓力差的結果。

■ 透析 Dialysis

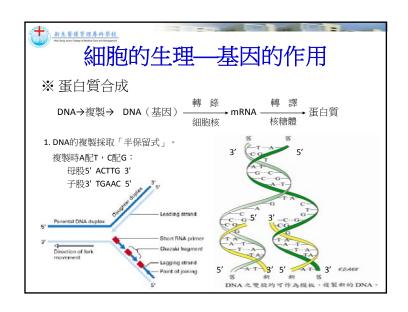
- ▶ 溶質顆粒藉著半透膜的擴散作用,而將小分子與大分子分開的是 為透析。
- ▶此原理可運用於人工腎臟機器,當病人的血液通過體外的透析膜 (人工腎臟),小顆粒廢物由血液跑到透析膜外的溶液中,同時 某些養分也可由溶液進入血液內,流回病人體內。

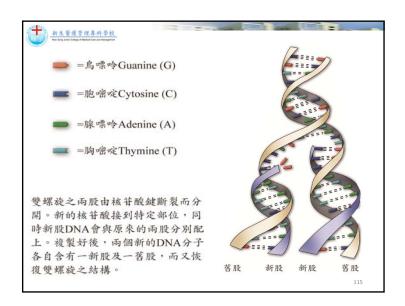

103

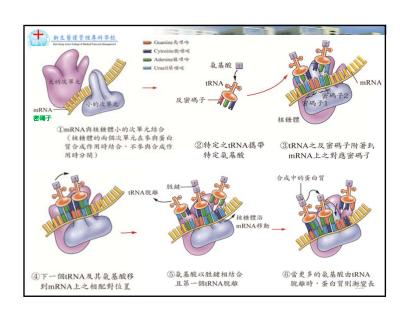
細胞的生理—主動過程

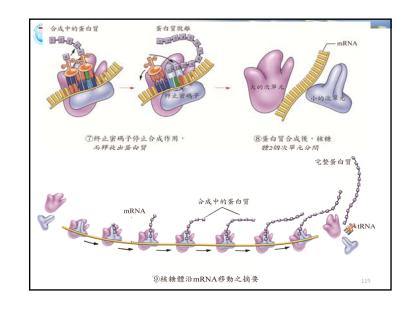
■ 主動過程Active Process

- 主動運輸 Active Transport
- 是**逆**著**濃度梯度**進行
- 運輸過程中需耗費細胞 產生的ATP,且此運輸需 在活體內方可進行。








新生營護管理專科學校 Han Sang Amer Calego of Medical Can and Management

細胞的生理——基因的作用

- 轉譯(translation):
- ▶ mRNA含氦鹼基序列内的訊息,指令蛋白質的胺基酸序列的過程。
- ▶ 成熟的mRNA離開細胞核,到達RER上進行轉譯的工作。
- ▶轉譯時mRNA上三個一組含氮鹼基稱為密碼子(condon),可和tRNA上的反密碼(anti-codon)配對。此步驟在核糖體上進行。
- ▶ 基因(gene)在DNA上、密碼子在mRNA上、反密碼在tRNA上。
- ▶ 特定反密碼的tRNA攜帶特定的胺基酸,在核醣體上,與特定密碼子的 mRNA配對,將胺基酸正確無誤的排列,形成特定的胜肽蛋白質鏈,完 成轉譯工作。
- ▶ 此特定的胜肽蛋白質鏈進人內質網,進行轉譯後修飾,再進入高基氏體包裝、分配後形成有特定功能的蛋白質分子。
- ➤由於DNA與RNA上含氮鹼基有固定的配位互補,才能使得不論是 複製、轉錄、轉譯的過程得以精確、不出錯的形成正確的蛋白質 分子。

表 2-8 DNA	與 mRNA 與所	解讀成之特殊氨基酸的例·
DNA	mRNA	氨基酸 (amino acid)
AAA	UUU	苯丙氨酸 (phenylalanine)
AGG	UCC	絲氨酸 (serine)
ACA	UGU	半胱氨酸 (cysteine)
ATC	UAG	終止密碼子
GGG	CCC	脯氨酸 (proline)
GAA	CUU	白氨酸 (leucine)
GCT	CGA	精氨酸 (arginine)
TTT	AAA	離氨酸 (lysine)
TGC	ACG	蘇氨酸 (threonine)
CCG	GGC	甘氨酸 (glycine)
CTC	GAG	麩氨酸 (glutamate)

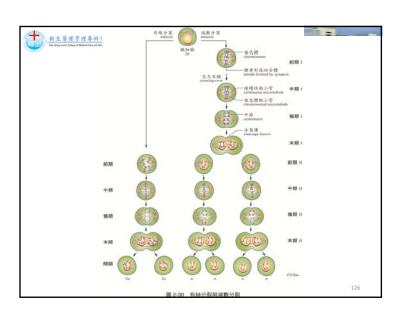
新生智護管理專科學校 Hin Song Area College of Medical Core and Management

細胞分裂(Cell Division)

(一)細胞生命週期(Cell Life Cycle)

身體的細胞因**受傷、病變及老化**等因素造成數目減少,加上個體不斷地**生長和組織的更替**,使得**身體對細胞的需求增加**,因此,必須**不斷地產生新細胞,以維持身體基礎的新陳代謝**。

- 體內大多數的細胞自形成開始,經過一段生的時期後,會進入細胞分裂時期,以 產生新細胞,其餘時間,細胞執行不同的特化工作,直至細胞死亡,這整個過程 稱為**細胞牛命週期**。
- 是指細胞由形成開始,至能生殖(分裂)為止間的變化過程。
- 每個細胞的生命週期各不相同,也有少數細胞,自形成後,不再行分裂作用。
- □ 間期 (interphase) →細胞進行生長及一般的活動。
- □ 分裂期 (mitotic phase) →細胞進行分裂以增殖。
 - ▶ 細胞分裂 (cell division): 細胞自形成開始到完成細胞分裂的過程。包括:
 - ➤ 細胞核分裂 (nuclear division) → 體細胞分裂 + 生殖細胞分裂
 - ➤ 細胞質分裂(cytoplasmic division)。



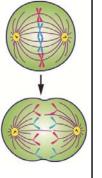
- 依細胞核分裂的方式
 - 1.體細胞分裂 (somatic cell division):
 - 單一個親細胞將自己複製,過程包含**細胞核分裂(即有絲分裂)**和 細胞質分裂。
 - 分裂完成後,兩個子細胞與親細胞含有相同數目與種類的染色體, 亦即子細胞擁有的遺傳物質與遺傳潛能跟親細胞相同。
 - 使身體細胞的數目增加。
 - 成人平均每天會損失掉幾十億個細胞,體細胞分裂可更替死傷的細 - 成人平均每天會損失掉幾十億個細胞,體細胞分裂可更替死傷的細 - 成人平均每天會損失掉幾十億個細胞,體細胞分裂可更替死傷的細
 - 2. 生殖細胞分裂 (reproductive cell division):
 - 可產生**精子與卵**,以準備形成新生命,包括**減數分裂 (meiosis)**及 **細胞質分裂**。

★出胞分裂--體熱田胞分裂
(一)體細胞分裂Somatic Cell Division
●細胞生殖時必須複製染色體,其遺傳特徵才能傳到下一代。
●間期(interphase)是細胞未開始分裂的時期,此時核膜、核仁、核質與染色質之界限清晰,有一對中心粒。
- 染色體複製,同時製造兩個細胞所需的RNA與蛋白質。
- 當細胞完成DNA複製與合成RNA及蛋白質後,就開始進行有緣分裂。
- 當完成細胞核的有緣分裂、細胞質分裂及間期的生長後,即完成體細胞的一個分裂週期。
- 有絲分裂所需的時間,會隨著細胞的種類、存在的部位及環境的溫度而改變。

1.前期 (prophase):

- 染色質變短,且纏繞成染色體,核仁變模糊 核膜瓦解。
- 染色體絲配對,並集結在靠近赤道平面區域
- 成對的中心粒分開,並分別移向細胞的兩極
- 在中心粒之間,有一系列的微小管組成兩組纖維,其中<mark>連續微小管</mark>從每一對中心粒周圍發出,並向對方長過去,即由細胞之一極向另一極延伸,同時,另一組染色體微小管由中節延伸到細胞的一端。【微小管一協助染色體移動】
- 染色體微小管與連續微小管合稱為有絲分裂紡錘體(mitotic spindle), 再 加 上 中 心 粒 則 稱 為 有 絲 分 裂 器(mitotic apparatus)。

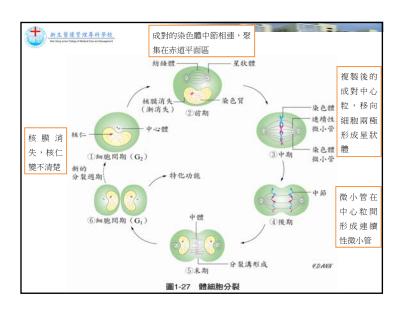
127


細胞分裂

2.中期 (metaphase):

- 染色體絲的中節於細胞的**赤道面排成一線**。
- 每一對子染色體的中節形成染色體微小管,而將中節連到細胞的一極。
- 加入干**擾形成紡錘絲的藥物,細胞會停留在中期**。

3.後期 (anaphase):


- 特徵是中節分裂,同時兩組完全相同的染色體絲 (現在稱為染色體)移向細胞相對端。
- 染色體移動時,中節與微小管相連,看起來像是**把** 染色體拉向細胞的兩極。

4.末期(telophase):

- 有絲分裂的最後一期,**兩套相同的染色體**分別**移向細胞的 兩極並纏繞如網**,新的核膜包住染色體、染色體變為染色質的形態、核仁再出現、<mark>紡錘體消失,中心粒也會複製</mark>, 使每個新細胞各含兩對中心粒。
- 細胞質自細胞赤道附近的分裂溝向內進行,像是一個收縮 環把細胞完全分割成兩個細胞質分離的部分,形成2個與親 細胞相同的細胞。

新生營護管理專科學校 Hain Song Arear College of Medical Care and Management

細胞分裂--生殖細胞分裂

(二)生殖細胞分裂Reproductive Cell Division

- 在有性生殖,每一個新生物都是由親代的兩個不同生殖 細胞融合而產生。
- 生殖細胞稱為配子(gamete),包括女性卵巢產生的卵 細胞與男性睪丸產生的精細胞。
- 兩性配子聯結融合稱為受精,而受精後的細胞稱為接合子(zygote),含有來自雙親混合的染色體,經由重複的有絲分裂,而發育成為新個體。

131

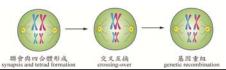
細胞分裂

- 配子核內之染色體數目與所有體細胞不同。
- 體細胞,例如腦細胞、胃細胞、腎細胞與其他所有單核體細胞, 其細胞核內只含46個染色體。
- 其中一套之**23個染色體含有進行細胞活動**所必須的基因;另一套 之**23個染色體是複製組**。
- 我們用**n**表示細胞核內**不同染色體數**目。
- 體細胞如上所述,含有<mark>兩套染色體</mark>,稱為雙套細胞(diploid cell), 用2n表示。
- 在一個雙套細胞,屬於同一對的染色體稱同源染色體 (homologous chromo-some)。
- 透過減數分裂才不會使每一代的染色體數目加倍。
- 減數分裂只有在製造配子時才發生,它使成熟的配子只含有一套 之23個染色體,稱為<mark>單套細胞(haploid cell),用n表示</mark>。

細胞分裂--生殖細胞分裂

- 生殖細胞分裂(Reproductive Cell Division)
- · XX 。 互换

- 減數分裂(Meiosis)
- 減數分裂發生於生殖細胞產生時,且其在分裂過程中,會在 同源染色體聯會成四合體(tetrad)時發生互換現象(crossingover),而導致基因重組(圖1-28)。
- 減數分裂為經過一次染色體複製、兩次連續細胞核及細胞質 的分裂(減數分裂 I 及減數分裂 II),以形成單套(23 個)染色體 的過程。
- 減數分裂Ⅰ及Ⅱ各包含前期、中期、後期和末期四個階段的分 裂過程與有絲分裂相似。
- 細胞質分裂
 - 完整的減數分裂會經過**連續兩次的細胞核分裂及細胞質分裂**。


細胞分裂

- 減數分裂Meiosis
 - 男性睪丸中以減數分裂形成**單套的精細胞**的過程稱為精子 發生(spermatogenesis),在女性卵巢中以減數分裂形成 **單套體卵細胞**的過程稱為卵子發生(oogenesis)。
 - 減數分裂發生於**兩個相連續的細胞核分裂**,即減數分裂 I (meiosis I) 與減數分裂 II (meiosis II)。
 - 在減數分裂 I 之前的<mark>間期</mark>,染色體自行複製,這**與體細胞** 在有緣分裂前的間期所進行的複製一樣,當複製完成,即 會進入減數分裂I。

細胞分裂

- 減數分裂 I Meiosis I
 - 減數分裂 I 可使每一個子細胞含有單套染色體。
 - 分為前期 I 、中期 I 、後期 I 與末期 I 。
 - 1.前期 I (prophase I):
 - » 染色體變粗短、核膜與核仁消失、中心粒複製、紡錘體出現。
 - » 同源染色體在核的區域配對排成線狀,稱為聯會(synapsis)。
 - » 每一對同源染色體的四個染色體絲稱為四合體(tetrad)。
 - » 四合體內的染色體絲可能會部分交換,稱為交叉互換(crossingover),如此可使它們的基因交換,而不產生相同細胞,或與親 代細胞相同。

.

細胞分裂

- 2.中期 I (metaphase I):
 - » 成對的染色體在細胞赤道面兩邊排成線。
 - »每一對染色體的中節也會形成**染色體微小管**而與細胞之兩極相連。
- 3.後期 I (anaphase I):
 - » 染色體對分開,每一個**同源染色體移向兩極**,而中節仍將 子染色體拉住。
- 4.末期 I (telophase I):
 - » 與有絲分裂末期相似。
 - »細胞質分裂,形成2個與親細胞相同的細胞。

- ●減數分裂Ⅱ Meiosis II
- 又稱為赤道分裂(equatorial division)
- 包括前期Ⅱ(prophase II)、中期Ⅱ(metaphase II)、後期Ⅱ(anaphase II)、末期Ⅱ(telophase II)。
- 這幾期基本上與有絲分裂時相似,中節把染色體絲分別拉向兩極。

137

細胞分裂--體細胞分裂

□細胞質分裂

- 細胞質的分裂也稱為<mark>胞漿移動(cytokinesis)</mark> , 從細胞核 分裂後期末開始,而與分裂末期同時結束。
- 細胞質分裂起自細胞膜分裂溝(cleavage furrow)的形成。
- 分裂溝出現的同時,在細胞間可見到<u>微小管與肌動蛋白絲</u>形成中體(midbody)聚集,直到最後將細胞完全分割成兩個分離的子細胞。